Exercise Influences upon Stress-Resilience and Resilient Health

Archer T¹*, Garcia D²

¹University of Gothenburg, Department of Psychology, Box 500, 405 30 Gothenburg, Sweden.
²Network for Empowerment and Well-Being, Sweden

Received July 29, 2016; Accepted August 03, 2016; Published August 05, 2016

Copyright: © 2016 Archer T et al

*Corresponding author: University of Gothenburg, Department of Psychology, Box 500, 405 30 Gothenburg, Sweden, E-mail: trevor.archer@psy.gu.se.

Protection against real and potentially adverse epigenetic, behavioral and metabolic consequences of stressors and traumatic events thereby offering prevention against chronic diseases [2,4]. Regular physical exercise prevents tissue and cellular senescence with active individuals at lower risk for malignancies such as cancer of the colon and prostate, osteoporosis, depression and anxiety, diabetes and pre-diabetic individuals, and neurodegenerative disorders [5-7]. The introduction of exercise schedules to ensure individuals’ health and well-being has borne an impressive amount of fruit under laboratory, applied and clinical conditions through avenues of health guidelines and biomarkers [7-9]. Exercise combined with or without dietary restriction affected a plethora of factors linked to psychological, neurochemical, neuroimmunological and anti-pathological domains defining bio behavioral resilience that persist throughout the lifecycle [9-11]. Physical exercise/activity through a range of anti-stress manifestations provides benefits for health and well-being that reach beyond the transient neuroprotection and neurorestoration of damaged tissues and organs but through the mobilization of processes such as macroautophagy, angiogenesis and promotion of neurotrophic growth factors it sustains brain and CNS integrity preempting diabetes and obesity, cardiovascular disorders, immunosenescence and

Muscular decline to implement a multifaceted resilience that delays or arrests the progression of age-related disorders [12-15]. Notwithstanding the large proportion of the general public more-or-less submerged in a sedentary way of life and sedentary occupations, exercise, ubiquitously, offers a highly potent health-promoting lifeline with optimistic prognoses under both neurologic, psychiatric and general health conditions [16,17].

Adherence to regular, organized physical exercise, whether endurance-aerobic or resistance of adequate intensity, frequency and duration, and maintenance of physical fitness ensures reinforced resilience and well-being as well as positive psychological attributes together with physical health [18,19]. For example, Childs and de Wit (2014) have indicated that regular schedules of exercise buttressed against the negative emotional consequences of stressful events thereby strength the position that exercise has beneficial influences even in healthy individuals. In a study of whether or not organizational stressors, i.e stressors generated within
organizations such as workplace or committee, etc, are associated with positive and negative outcomes, i.e. positive and negative affect, performance satisfaction, sports athletes responded to estimations of organizational stressors, coping styles, positive and negative affect, and performance satisfaction [19]. The findings indicated that goals and development stressors (duration and intensity) and team and culture stressors (frequency and intensity) were related positively to negative affect and, concurrently, problem-focused coping was linked positively to positive affect whereas emotion-focused coping was linked positively to negative affect. In organizational settings, the notion of ‘peer-health champions’ has been presented as a multilevel workplace intervention to promote healthy behaviors, such as physical exercise; through the derivation of peer physical activity champions several facets of health endorsement are generated, including facilitation of social connections between colleagues and sensitivity in initiation and engagement [20].

One prevailing notion of fundamental utility in health endeavors, arising from the study of athletes and variables affecting their performance outcomes, is encompassed by ‘mental-toughness’ which incorporates several attributes that relate to positive affect and empowerment, including resilience, emotional intelligence and flexibility, motivation, and/or self-efficacy that enable ‘mentally tough’ individuals to excel under stressful circumstances in addition to ability to demonstrate constructive coping [21].

The emergence of epigenetic mechanisms in determining the biological fate of individuals has provided remarkable propensities through which physical exercise-activity may modulate health state and resilience [22,23]. Observed that daily exercise caused an increased in histone H4 acetylation levels in the prefrontal cortices of aged rats (21 months of age), without inducing any such effects in young adult rat group (3 months of age). DNA methyltransferase levels were elevated in the aged cortices of animals submitted to a single session of exercise. Their results imply that the prefrontal cortex is amenable to epigenetic alterations in an exercise-dependent relationship whereby H4 acetylation levels and DNA methyltransferase content changes appear to be associated with exercise-induced effects on brain functions. Exercise promotes a variety of metabolic adaptations allow organisms to accommodate increased energy requirements [24,25]. Discuss a range of substrates and signaling molecules that are regulated by exercise thereby modulating important epigenetic mechanisms that down-stream control the gene expression involved in metabolism. The lifestyle, exercise-oriented or sedentary, of fathers of offspring may exert lasting influences upon the eventual health status their children but not necessarily in a desired direction: [26], showed that the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring’s predisposition to insulin resistance. Their findings disclosed that exercised mouse fathers who had been given access to wheel-running over twelve weeks produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. In summary, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings imply that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm. [27-30] examined whether or not exercise intervention could reverse the effects, invariably detrimental, of chronic restraint stress upon depressiveness and amygdala biomarkers. They observed that depressive behaviors were alleviated by the intervention which induced a global reduction of G9a histone mtrhyltransferase and H3K9me2 in the basolateral amygdala [31-33].
Muscular exertion through endurance or resistance exercise induces psychological and neurobiological reliance that covers a multitude of domains including cognition, aging, affective states, motor functions, neuroimmune systems and cardiovascular integrity. Nevertheless there remain several issues that remain as yet unresolved in the pursuit of exercise-resilience under laboratory, clinical and applied expressions of health: the tailoring of exercise specifics (type, intensity, frequencies, duration, etc) to individuals’ health status and biopsychological attributes, the selection of physical condition and fitness, dietary requirements that ought to be chosen in the exercise context and the relative advantages of prevention over intervention.

References

18. Garcia D, Daniele T, Nima AA, Archer T (2016) The Archer-Garcia Ratio: A Brief Measure to Predict Exercise Behavior. 28th Association for...


